Navigating the new era of climate uncertainty: The importance of updated traffic information Read article

Originally posted on StateScoop
As cities increasingly try to operate in a smarter, more data-driven way, they are confronting a data paradox. On the one hand, cities have more and more terabytes of system-generated data than they know what to do with. On the other hand, they do not have enough of the right data to help them make important policy and budget decisions based on data instead of generalized assumptions. How can this be — how can cities both have too much data and not enough data at the same time?
To better understand this “data paradox,” which my colleague David D’Silva touched on in a recent opinion piece written for Smart Cities Dive, we need to segment the issue into three parts:
In every major city in the United States, and beyond, there are millions of sensors producing a staggering amount of data every millisecond, second, minute, hour, and day. Consider traffic signal systems — a large city has thousands of signals, creating huge amounts of data every day, and that’s just for one metro-wide system. In many circumstances, that signal data is captured, stored and more or less forgotten. Often it is only when specific events like traffic backups activate the alert system in real time that the engineers interact with the data to gain insights about how well the system is functioning. This signal data is reviewed and properly stored, but it’s not often used for analysis to address recurring or future problems in a preventative, proactive analysis.
Cities face three challenges in activating insights and utility from this kind of generated data:
In order to create a set of sustainable, equitable policies for cities, it is important to understand not just what people are doing today in terms of their transit and mobility patterns, but what they are trying to do and where they are trying to go. What is the ideal way for someone to get where they are going? These behavioral datasets are often complicated and expensive, if not impossible, to collect in a timely fashion that reflects the diversity of needs present in a city.
To conduct effective transportation planning, layering analysis is critical. People generally are trying to get to jobs, healthcare, education, services, and entertainment. But the right data is often not available to planners — they often don’t know where the jobs are or what services people are trying to access compared to where they live. They may be able to figure out how long it would take a given person to go from point A to point B, but understanding that the individual really wants to go to point C and then point D is beyond the scope of the datasets that are available to them. Outside of census data, transportation planners often don’t have real-time holistic insight across the city related to what jobs are available or under-filled, and where the folks that are qualified for those jobs live. One of the grand challenges for economic growth for cities is to connect individuals with the optimal job they are qualified for, but in many cases this data just does not exist or is not available to city and transportation planners.
There is a third angle, where the data exists and is not too big or too small but may still be difficult to access. Within the city data ecosystem, there are a few different scenarios where the city agency does not have access to the data that is necessary to answer its questions. It is possible to access this kind of data, but it often requires lengthy and complicated data-sharing processes that have several hurdles, including:
This paradox has created a dilemma that cities must contend with. Some cities have decided to begin digging through the data at hand to gain insights from the data they already own, choosing not to wait for the identification and collection of user-centric data about transportation consumers’ actual behavior. Alternatively, the private sector can work closer with cities on this challenge. These conditions are not unique to the public sector, and in some instances, have already been solved in the private sector — there is an opportunity to use those solutions and approaches as a model for solutions in the city space.
While there is no magic answer to solve this kind of conundrum, I believe we need to begin a real and sustained effort that is intended to identify, develop, refine and deploy new data-driven solutions that will enable millions of citizens around the world in our major cities.